

Managing High-Risk Patients with Atrial Fibrillation

Optimizing Anticoagulation Through Evidence-Based Shared Decision-Making

This educational activity is sponsored by Postgraduate Healthcare Education, LLC and supported by an educational grant from Bristol-Myers Squibb and the Pfizer Alliance

Faculty

Barbara S. Wiggins, PharmD, BCPS, CLS, FNLA, FAHA, FCCP, AACC

Affiliate Professor University of South Carolina College of Pharmacy Clinical Pharmacy Specialist, Cardiology Medical University of South Carolina Charleston, SC

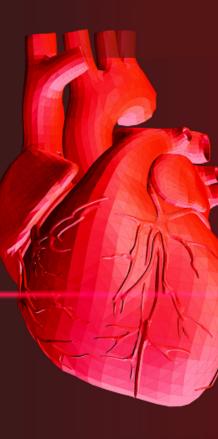
Dr. Wiggins is a Clinical Pharmacy Specialist in Cardiology at the Medical

University of South Carolina. She is also Affiliate Professor at the University of South Carolina College of Pharmacy. She received her BS in Pharmacy from St. Louis College of Pharmacy and her PharmD from Virginia Commonwealth University/Medical College of Virginia in Richmond, Virginia. Dr. Wiggins has attained Board Certification in pharmacotherapy, critical care, and cardiology. She has also been named Fellow of the American Heart Association, National Lipid Association, American College of Clinical Pharmacy, and American College of Cardiology. She serves as a reviewer for *Pharmacotherapy, British Medical Journal, European Medical Journal*, and *Journal of Clinical Lipidology* and serves on the editorial board of the *American Journal of Cardiovascular Drugs*. She also currently serves on various committees for the American College of Cardiology.

Disclosures

Dr. Wiggins states that she has no relevant affiliation or financial relationship or relationship to products or devices with a commercial interest related to the content of this activity to disclose.

The clinical reviewer, **Kyle A. Davis, PharmD**, states he has no relevant affiliation or financial relationship or relationship to products or devices with a commercial interest related to the content of this activity to disclose.


Susanne Batesko, RN, BSN, Robin Soboti, RPh, and Susan R. Grady, MSN, RN-BC, as well as the planners, managers, and other individuals, not previously disclosed, who are in a position to control the content of Postgraduate Healthcare Education (PHE) continuing education activities hereby state that they have no relevant conflicts of interest and no financial relationships or relationships to products or devices during the past 12 months to disclose in relation to this activity. PHE is committed to providing participants with a quality learning experience and to improve clinical outcomes without promoting the financial interests of a proprietary business.

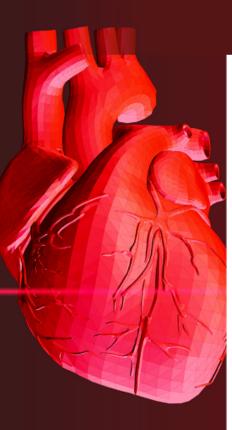
Accreditation

Postgraduate Healthcare Education, LLC is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education.

UAN: 0430-0000-20-023-H01-P Credits: 1.25 hour (0.125 CEU) Type of Activity: Application

Objectives

- **Describe** evidence for anticoagulant selection in high-risk atrial fibrillation (AF) subpopulations, including older patients, those with a history of stroke, those with renal dysfunction, and those undergoing percutaneous coronary intervention (PCI)
- **Recognize** the need to use the HAS-BLED score to identify and address modifiable risk factors for bleeding
- **Discuss** the benefits and drawbacks of various anticoagulant options in patients with AF, including monitoring requirements, drug interactions, and bleeding risk
- Formulate individualized, evidence-based anticoagulation plans for patients with AF using a shared decision-making process


Background: Atrial Fibrillation

- Affects 2.7 to 6.7 million patients in the United States (U.S.)
 - Affects 33.5 million globally
- Risk increases with age
- Frequently seen with comorbidities
- Major cause of stroke (> 125,000/year)
 - Risk of stroke is 5 times higher in patients with AF
- Most common arrhythmia requiring hospitalization

Alkhouli M, et al. J Am Coll Cardiol. 2018;71(24):2790-801.; Du X, et al. J Am Coll Cardiol. 2017;69(15):1968-82.; January CT, et al. J Am Coll Cardiol. 2014;64(21):e1-76.; Lip GYH, et al. Nat Rev Dis Primers. 2016;2:16016.

Risk Factors for Stroke

Risk Factors for Stroke

Non-modifiable	Modifiable
• Age	Hypertension
• Gender	 Diabetes
• Race	 Smoking
Family history	 Dyslipidemia
	 Atrial fibrillation
	CHC use
	Obesity
	Heart failure
	• PAD

CHC, combined hormonal contraceptive; PAD, peripheral artery disease.

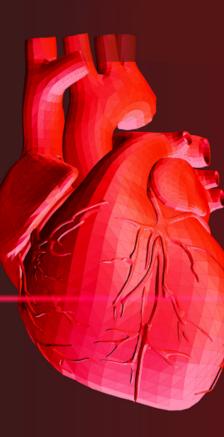
Risk Stratification – Stroke Risk Scoring

CHA₂DS₂-VASc

Risk factor	Score
C HF or LVEF $\leq 40\%$	1
Hypertension	1
A_2 ge \geq 75 years	2
Diabetes	1
S ₂ troke/TIA/thromboembolism	2
Vascular disease	1
Age 65-74 years	1
S_c ex category	1

CHF, congestive heart failure; LVEF, left ventricular ejection fraction; TIA, transient ischemic attack. Maximum of 9

Pisters R, et al. Chest. 2010;138(5):1093-100.



- Risk of stroke due to AF increased with each subsequent decade of life
 - 50-59 years old: 1.5%
 - 60-69 years old: 2.8%
 - 70-79 years old: 9.95%
 - 80-89 years old: 23.5%

• Atrial Fibrillation Investigators

- Risk of stroke:
 - < 65 years old: 1% per year
 - 65-75 years old: 4.3%
 - ≥ 75 years old: 3.5%
- ATRIA Cohort
 - Risk of stroke:
 - 65-74 years old: 1.57 thromboembolic events/100 person-years
 - < 65 years old: 0.64 thromboembolic events/100 person-years Lane DA, et al. Thromb Haemost. 2009;101(5):802-5.; Poli D, et al. Thromb Haemost. 2009;101(5):938-42.

Vascular Disease

Risk of hospital admission and death due to thromboembolism in patients with AF

- 1 year: non-significant, HR 0.97 (95% CI 0.3-3.011, p=0.96)
- 5 years: *significant,* HR 2.04 (95% CI 1.29-3.22, p=0.002)
- 10 years: *significant,* HR 2.22 (95% CI 1.49-3.30, p<0.0001)

CI, confidence interval; HR, hazard ratio. Conway DSG, et al. *Am J Cardiol*. 2004;93(11):1422-5.; Petersen P, et al. *Arch Intern Med*. 1990;150(4):819-21.; Siu CW, et al. *Chest*. 2007;132(1):44-9.

Sex Category

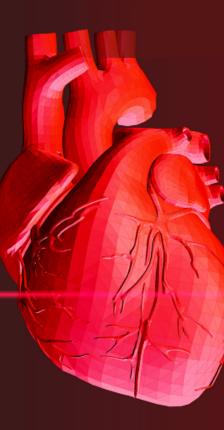
- Study by Poli D, et al evaluated 780 patients with AF on OAC
 - Stroke rate:
 - Males: 1.2 x 100 patient-years
 - Females: 2.43 x 100 patient-years
 - After correction for age: p=0.009
 - Other findings:
 - Females had greater disability
 - Females had more severe and more fatal strokes than males
 - RR 3.1 (95% CI 1.3-6.5; p=0.001)

Anticoagulation

CHA ₂ DS ₂ -VASc	CHA ₂ DS ₂ -VASc	CHA ₂ DS ₂ -VASc
Score = 0 in men or 1 in women	Score = 1 in men or 2 in women	Score ≥ 2 in men or 3 in women

For patients with AF (except with moderate-to-severe mitral stenosis or a mechanical heart valve), and a CHA₂DS₂-VASc score of 0 in men or 1 in women, it is reasonable to omit anticoagulant therapy

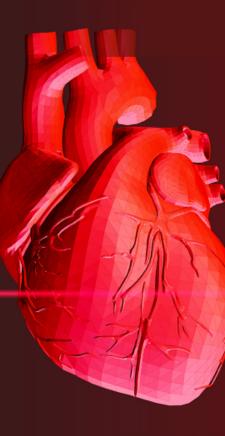
For patients with AF (except with moderate-to-severe mitral stenosis or a mechanical heart valve), prescribing an oral anticoagulant to reduce thromboembolic stroke risk may be considered


For patients with AF who have a CHA₂DS₂-VASc score of 2 or greater in men or 3 or greater in women, oral anticoagulation is recommended

Choosing When to Anticoagulate

Thromboembolic event risk 12.2% 11.2% 10.8% 0 4.8% 7.2% 9.7% 0.6% 2.2% 3.2% CHA₂DS₂-VASc 0 1 2 3 4 7 8 5 6 9 No May Anticoagulation recommended therapy consider

Bleed Risk


HAS-BLED Score

HAS-BLED	
H ypertension	1
A bnormal renal or hepatic function	1 1
S troke	1
Bleeding	1
Labile INR*	1
Elderly (> 65 years old)	1
D rugs [€] or alcohol use	1 1

*unstable or poor time in range (< 60%) [€]concomitant use of antiplatelet agents, aspirin, nonsteroidal anti-inflammatory, etc.

Score	Bleeding risk (% bleeds per 100 patient-years)
0-1	Low risk (1.1%)
2	Intermediate risk (1.9%)
≥ 3	High risk (4.9%)

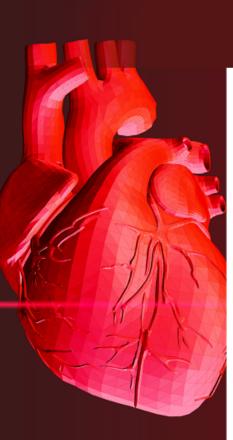
INR, international normalized ratio.

HAS-BLED Score

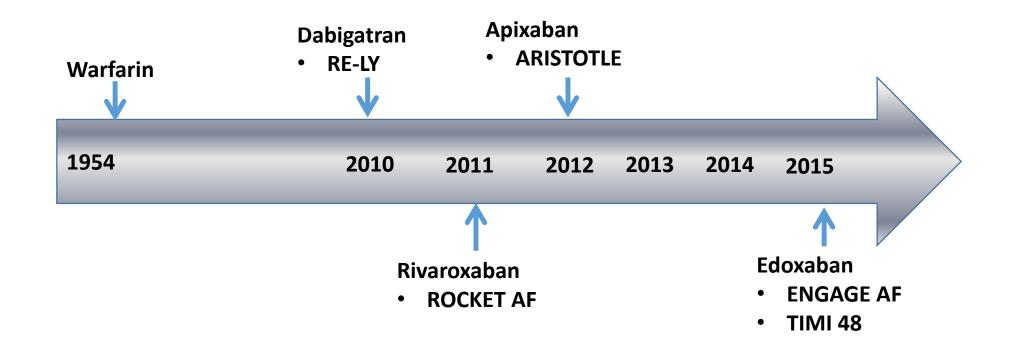
- A simple calculation that should be incorporated into clinical practice
- HAS-BLED is a better predictor of major bleeding than other bleeding risk scores
- HAS-BLED \geq 3 is indicative of a high risk for bleeding
 - Should not be used on its own to determine anticoagulation
 - Helps to identify patients who need closer/more careful management
 - Control modifiable risk factors (hypertension, labile INRs)

Choosing an Anticoagulant

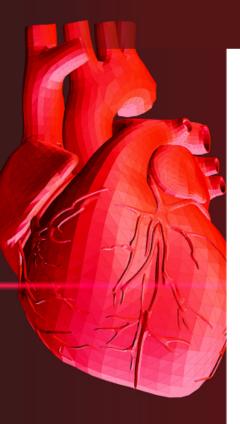
Types of Atrial Fibrillation



Paroxysmal (≤ 7 days) Persistent (> 7 days) Long-standing persistent (> 12-month duration)


Permanent

Nonvalvular


January CT, et al. Circulation. 2014;130(23):2071-104.

New Oral Anticoagulants for Stroke Prevention in Non-Valvular AF

Pharmacokinetic Properties of DOACs

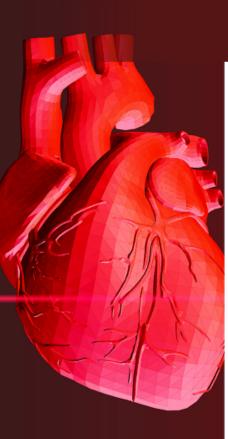

	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Anticoagulation target	Factor II	Factor Xa	Factor Xa	Factor Xa
Impact on coagulation assay	aPTT (2-3 x) INR 40%个	aPTT 40% INR 40%个	个aPTT & INR	个aPTT
Time to peak (hours)	1-3	2-4	1-3	1-2
Half-life (hours)	14-17	9-13	8-15	~ 10
% renal elimination	80%	66%	25%	50%
Dialyzable	Yes	No	No	No
CYP metabolism	No	30% CYP3A4	15% CYP3A4	< 4%
P-glycoprotein substrate?	Yes	Yes	Yes	Yes

aPTT, activated prothrombin time; CYP, cytochrome P450; DOAC, direct oral anticoagulant.

Garcia D, et al. *Blood*. 2010;115(1):15-20.; Wittkowsky A. *Pharmacotherapy*. 2011;31(12):1175-91.

Choosing an Anticoagulant in Special Populations

High-Risk Patient Groups


- Elderly
- Prior history of stroke
- Triple therapy
- Renal dysfunction

Elderly

High-Risk Patients: The Elderly

- Elderly
 - Increasing population
 - Number of people > 80 years old is expected to reach 25 million by 2050
 - Increased age brings an increase in chronic diseases
 - Many older adults live healthy, active lives
- Many are likely undertreated
 - Lack of adequate representation in clinical trials
 - Concern for overall risk (frailty, end organ dysfunction)

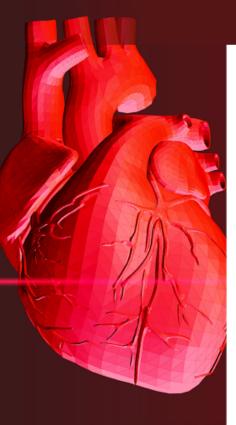
High-Risk Patients: The Elderly

Prevalence of AF:

- Most common arrhythmia in those > 65 years old
 - 10% of people over age 80 have AF
 - 70% of patients with AF are between 65 and 85 years old
- Primary reason for anticoagulation: stroke prevention
 - Strokes secondary to AF have high morbidity and mortality

High-Risk Patients: The Elderly and Warfarin

	Study	Type (N)	Patient age	Comparison	Primary outcome	Results	Bleeding
	BAFTA	RCT (973)	≥ 75 years	Warfarin vs. ASA 75 mg	Stroke/SEE/ICH	RR 0.48 (CI 0.28-0.80)	1.9 vs. 2% (p=0.90)
	WASPO	RCT (75)	≥ 80 years	Warfarin vs. ASA 300 mg	Death, TE, bleeding	25% vs. 44% (p=0.11)	0 vs. 0.77%
	Wolff et al	Retrospective (561)	≥ 85 years	Warfarin vs. antiplatelet vs. PLC	Stroke	OR with warfarin 0.53 (CI 0.22-1.28)	
NAN A	SPAFII	Post-hoc (385)	≥ 75 years	Warfarin vs. ASA 325 mg	Stroke	3.6% vs. 4.8% (p=0.39)	
	Patti et al	Retrospective (505)	≥ 85 years	Warfarin vs. antiplatelet vs. PLC	Stroke/TIA/SEE	OR 0.64 (CI 0.24-1.69; p=0.37	4.0 % vs. 4.2% (p=0.77)

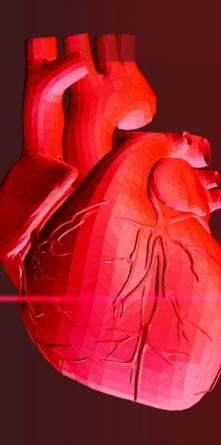

ASA, acetylsalicyclic acid (aspirin); ICH, intracerebral hemorrhage; OR, odds ratio; PLC, placebo; RCT, randomized controlled trial; SEE, systemic embolic event; TE, thromboembolism.

High-Risk Patients: The Elderly and DOACs

Pa
ZD)

Study	Туре (N)	Patient age	Comparison	Primary outcome	Results	Bleeding
AVVEROES	Post hoc (≥ 75 years: 1898; ≥ 85 years: 366)	> 75 years > 85 years	Apixaban vs. antiplatelet	Stroke, SEE	 ≥ 75 years: HR 0.33 (CI 0.19-0.54) ≥ 85 years: HR 0.14 (CI 0.02-0.48) 	 ≥ 75 years: 2.6% vs. 2.2% (p=0.50) ≥ 85 years: 4.7% vs. 4.9% (p=0.93)
RE-LY	Post hoc (7258)	≥ 75 years	Dabigatran 110 mg vs. dabigatran 150 mg vs. warfarin	Stroke, SEE	110 mg: HR 0.88 (Cl 0.66-1.17) 150 mg: HR 0.67 (Cl 0.49-0.9)	110 mg: 4.4% vs. 150 mg: 5.1% vs. warfarin: 4.4% (p=0.89; p=0.07)
ROCKET AF	Post hoc (75-84 years: 5566; ≥ 85 years: 663)	≥ 75 years	Rivaroxaban 20 mg vs. warfarin	Stroke, SEE	HR 0.80 (CI 0.63-1.02)	4.9% vs. 4.4% HR 1.11 (Cl 0.92-1.34)
ARISTOTLE	Post hoc (2396)	≥ 75 years	Apixaban 5 mg vs. warfarin	Stroke, SEE	HR 0.71 (CI 0.53-0.95)	3.3% vs. 5.2% (p<0.05)
ENGAGE AF	Post hoc (8474)	≥ 75 years	Edoxaban 60 mg vs. warfarin	Stroke, SEE	HR 0.83 (CI 0.66-1.04)	4% vs. 4.8% (p<0.05)

Efficacy/Safety: Adults > 75 Years Old

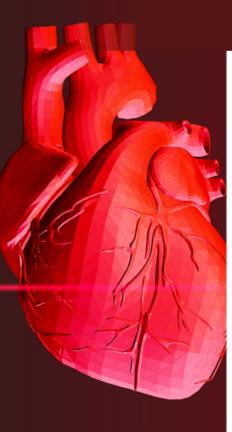


Meta-analysis	 Compare risk of stroke/SE and major bleeding in very old (DOACs vs. warfarin) 				
Stroke/SE	 Apixaban Dabigatran Rivaroxaban	HR 0.58 (CI 0.49-0.69) HR 0.77 (CI 0.65-0.85) HR 0.6 (CI 0.54-0.67)	p < 0.001 p = 0.045 p < 0.001		
Major bleeding	 Apixaban Dabigatran Rivaroxaban	HR 0.60 (0.54-0.67) HR 0.92 (0.78-1.07) HR 1.16 (1.07-1.24)	p < 0.001 p = 0.281 p < 0.001		

• Subgroup analysis of ARISTOPHANES study

SE, systemic embolism.

Deitelzweig S, et al. J Am Geriatr Soc. 2019;67(8):1662-71.


High-Risk Patients: Very Elderly

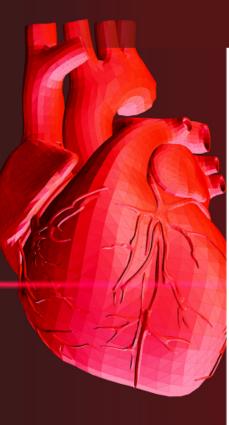
- National Health Insurance Research Database in Taiwan
- Risk of ischemic stroke and ICH in patients \geq 90 years of age
- Warfarin versus DOACs
- DOACs = lower risk of ICH
 - 00.42%/year vs. 1.63%/year

Patients with Prior Stroke

High-Risk Patients: Prior Stroke

- Prosper Study
 - Evaluated the effectiveness of DOACs vs. warfarin after ischemic stroke in patients with AF
 - Cohort included patients > 65 years old and anticoagulation naïve
- Primary outcome
 - Home time and MACE

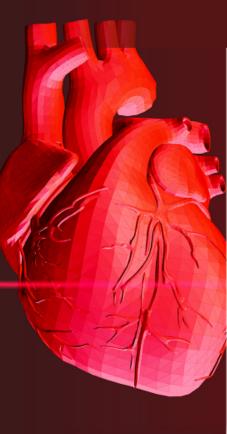
GWTG, Get With The Guidelines stroke registry; MACE, major adverse cardiovascular events.


High-Risk Patients: Prior Stroke

• Results

- 11,662 survivors of acute ischemic stroke
- 34.7% discharged on DOACs (warfarin, 65.3%)
- Patients discharged on DOAC had:
 - More days at home
 - 287.2 vs. 263 days
 - Fewer deaths
 - HR 0.88 (CI 0.82-0.9); p<0.001
 - Fewer all-cause readmissions
 - HR 0.93 (CI 0.88-0.97); p=0.003
 - Fewer cardiovascular admissions
 - HR 0.92 (CI 0.86-0.99); p=0.02
 - More gastrointestinal bleeding
 - HR 1.14 (CI 1.01-1.30); p=0.03

High-Risk Patients: Prior Stroke



- Conclusions
 - The utilization of a DOAC was associated with better long-term outcomes than warfarin

Patients on Dual Antiplatelet Therapy (DAPT)

High-Risk Patients: The Triple Therapy Threat

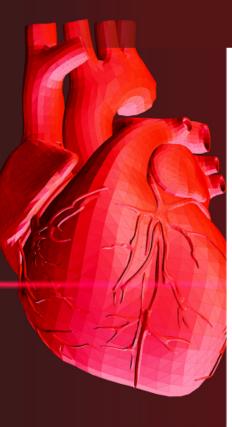
Triple Therapy Threat

- Patients require DAPT (aspirin + P2Y₁₂ inhibitor) and have an indication for systemic anticoagulation
- Approximately 5% to 10% of patients undergoing PCI have an indication for chronic anticoagulation
- Various strategies have been evaluated

WOEST Trial: What is the Optimal Antiplatelet and Anticoagulant Therapy in Patients with Oral Anticoagulation and Coronary Stenting

Objective

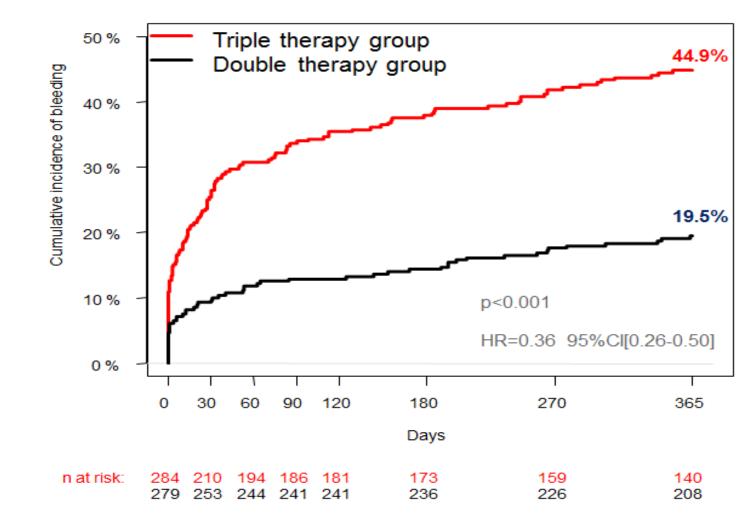
Evaluate the safety and efficacy of clopidogrel alone compared with clopidogrel plus aspirin in patients with an indication for OAC and s/p PCI


Trial design

Open-label, multicenter, randomized 1:1 ratio, controlled trial

Outcomes

Primary: occurrence of any bleeding within 1 year of PCI **Secondary:** composite of death, MI, stroke, stent thrombosis, and target-vessel revascularization

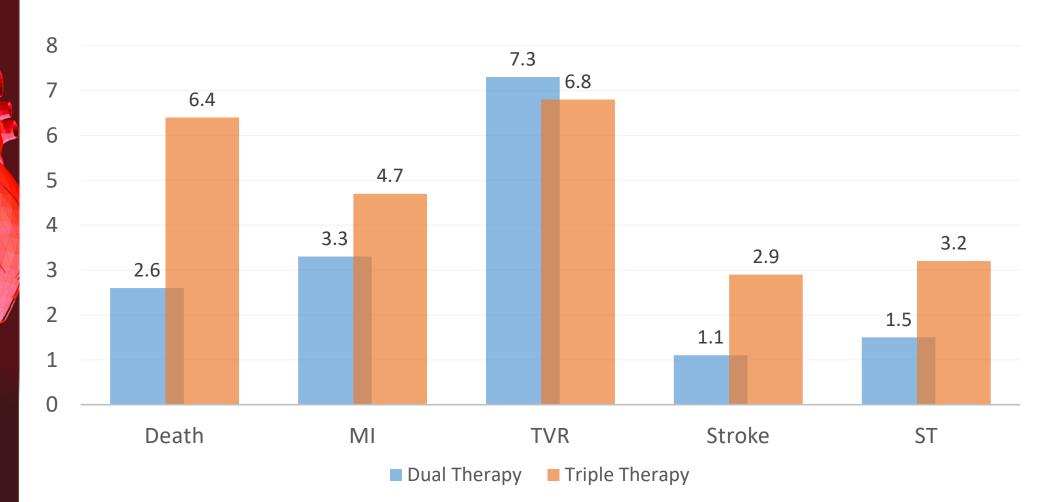

WOEST Trial: Inclusion and Exclusion Criteria

• Inclusion criteria:

- Age > 18 years
- Indication for OAC for at least 1 year
- At least 1 coronary lesion with an indication for PCI
- Exclusion criteria:
 - History of intracranial bleeding
 - Cardiogenic shock
 - Peptic ulcer disease in the past 6 months
 - Thrombocytopenia (platelets < 50,000)
 - Major bleeding within the past year
 - Age > 80 years

WOEST Trial: Primary Endpoint - Bleeding

Dewilde WJM, et al. Lancet. 2013;381(9872):1107-15.


WOEST Trial: Primary Endpoint - Bleeding

	DAPT (n=279)	TAT (n=284)	p-value
Any bleeding event	54 (19.4%)	126 (44.4%)	< 0.0001
TIMI Major Major and minor	9 (3.2%) 39 (14%)	16 (5.6%) 89 (31.3%)	0.159 < 0.0001
GUSTO			
Severe	4 (1.4%)	10 (3.5%)	0.119
Severe and moderate	15 (5.4%)	35 (12.3%)	0.003
BARC			
3	18 (6.5%)	36 (12.7%)	0.011
2	23 (8.2%)	59 (20.8%)	< 0.0001
2 + 3	40 (14.3%)	90 (31.7%)	< 0.0001
1	18 (6.5%)	45 (15.8%)	0.0004
Any blood transfusion	11 (3.9%)	27 (9.5%)	0.011

BARC, Bleeding Academic Research Consortium; GUSTO, Global Strategies for Opening Occluded Coronary Arteries; TAT, triple anticoagulant therapy; TIMI, thrombolysis in myocardial infarction.

Dewilde WJM, et al. Lancet. 2013;381(9872):1107-15.

WOEST Trial: Secondary Endpoint

ST, stent thrombosis; TVR, target-vessel revascularization.

Dewilde WJM, et al. Lancet. 2013;381(9872):1107-15.

WOEST Trial: Conclusions

- <u>First randomized trial</u> to address optimal antiplatelet therapy in patients on OAC undergoing coronary stenting
 - Specifically designed to evaluate bleeding events
 - <u>Primary endpoint</u>: Dual therapy with OAC plus clopidogrel resulted in less bleeding than triple therapy
 - <u>Secondary endpoint</u>: With dual therapy, there was no excess of thrombotic/thromboembolic events (stroke, stent thrombosis, target vessel revascularization, MI, or death)

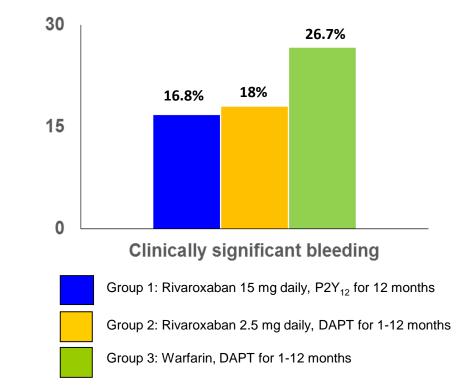
PIONEER AF – PCI: An Open-Label, Randomized, Controlled, Multicenter Study Exploring Two Treatment Strategies of Rivaroxaban and a Dose-Adjusted Oral Vitamin K Antagonist Treatment Strategy in Subjects With Atrial Fibrillation Who Undergo Percutaneous Coronary Intervention

Design:

Patients (n=2124) with AF and PCI were randomized to:

- Group 1: Rivaroxaban 15 mg daily plus P2Y₁₂ inhibitor for 12 months (n=709)
- Group 2: Rivaroxaban 2.5 mg twice daily plus DAPT for 1-12 months (n=709)
- Group 3: Warfarin plus DAPT for 1-12 months (n=706)

Results:


Clinically significant bleeding:

- 16.8% in Group 1
- 18% in Group 2
- 26.7% in Group 3

(HR 0.59, p<0.001 for group 1 vs. 3, ARR=9.9, NNT=11) (HR 0.63, p<0.001 for group 2 vs. 3, ARR=8.7, NNT=12)

ARR, absolute risk reduction; NNT, number needed to treat.

Gibson CM, et al. N Engl J Med. 2016;375(25):2423-34.

PIONEER AF – PCI

Secondary Outcomes: MACE (composite and alone) and stent thrombosis

- Stent thrombosis: 0.8% in group 1 vs. 0.9% in group 2 vs. 0.7% in group 3 (*HR 1.20, p=0.79 for group 1 vs. 3; HR 1.44, p=0.57 for group 2 vs. 3*)
- MACE: 6.5% in group 1 vs. 5.6% in group 2 vs. 6% in group 3 (*HR 1.08, p=0.75 for group 1 vs. 3; HR 0.93, p=0.76 for group 2 vs. 3*)

Conclusion:

In patients with AF undergoing PCI w/ stents,

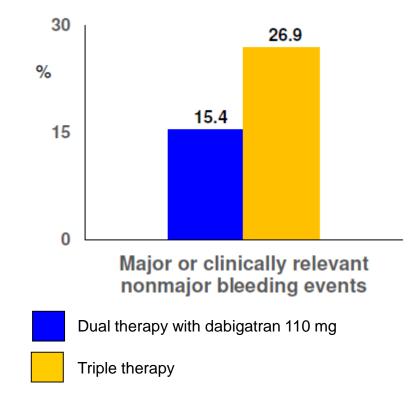
- Rivaroxaban 15 mg daily plus P2Y₁₂ monotherapy for 1 year *or*
- Rivaroxaban 2.5 mg BID plus 1, 6, or 12 months of DAPT reduced the risk of clinically significant bleeding compared to VKA plus 1, 6, or 12 months of DAPT

RE-DUAL PCI: Dual Antithrombotic Therapy with Dabigatran After Percutaneous Coronary Intervention in Patients with Atrial Fibrillation

Design:

Patients (n=2725) with AF undergoing coronary revascularization were randomized to:

- Dual therapy with dabigatran 110 mg (n=981)
- Dual therapy with dabigatran 150 mg (n = 763)
- Triple therapy with warfarin


Results:

Major or CRNM bleeding events:

- 15.4% of the dual therapy with dabigatran 110 mg group
- 26.9% of the triple therapy group (p for non-inferiority <0.001, p for superiority <0.001)

Major or CRNM bleeding events:

- 20.2% of the dual therapy with dabigatran 150 mg group
- 25.7% of the corresponding triple therapy group (excluding elderly participants outside the U.S.) (p for non-inferiority <0.001)

CRNM, clinically relevant non-major.

Cannon CP, et al. N Engl J Med. 2017;377(16):1513-24.

RE-DUAL PCI

Efficacy endpoint: composite of MI, stroke, systemic embolism

- 13.7% dual therapy vs. 13.4% triple therapy
- HR 1.04 (CI 0.84-1.29), p=0.005 for non-inferiority

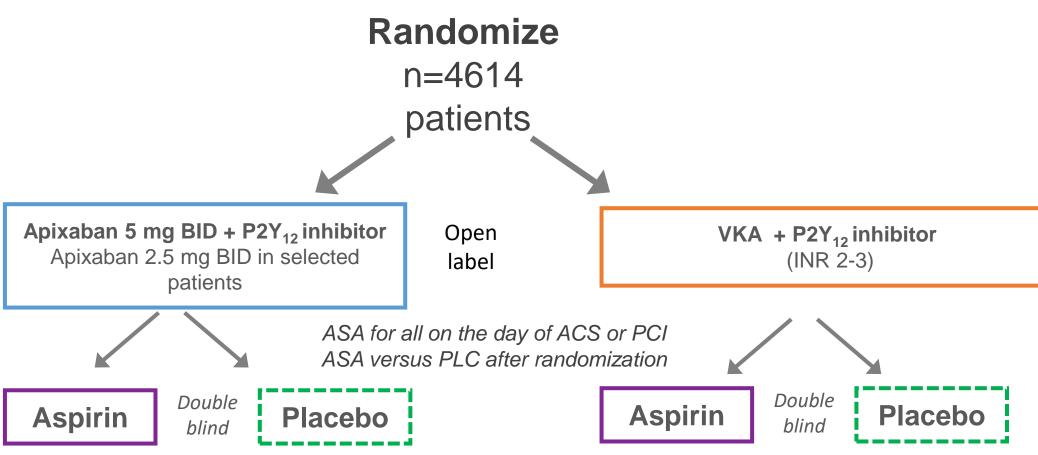
Conclusions:

In patients with AF who have undergone PCI,

- Dual therapy with dabigatran + P2Y₁₂ antagonist significantly reduced the risk of bleeding compared to warfarin triple therapy, with noninferiority for overall thromboembolic events
- Absolute risk reductions with dabigatran dual therapy were 11.5% and 5.5% in ISTH major or CRNM bleeding at the 110 mg and 150 mg doses, respectively, compared with warfarin triple therapy

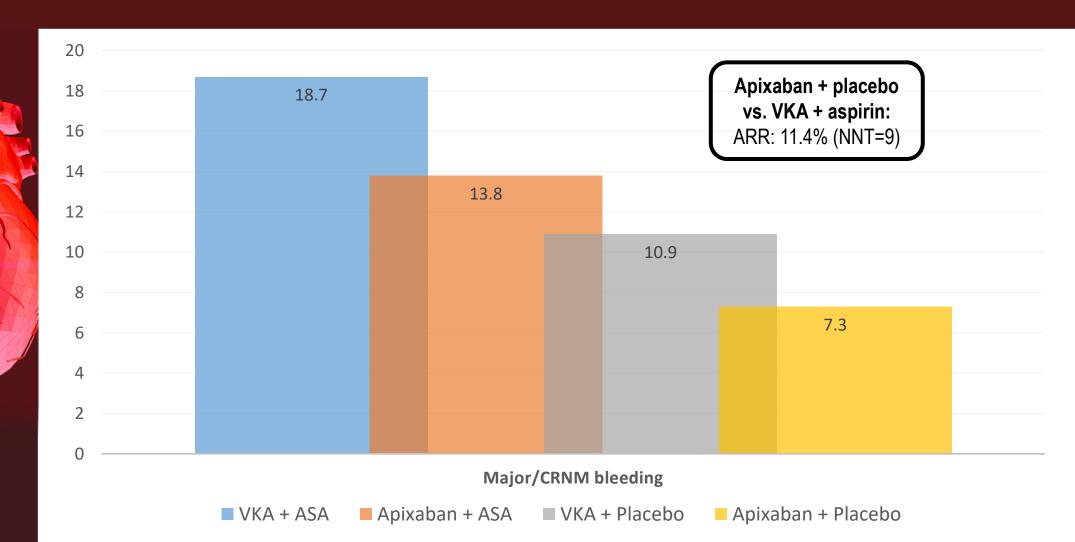
Objective Assess the safety and efficacy of apixaban + aspirin compared to VKA + aspirin or PLC

Trial design


Prospective, multicenter, two-by-two factorial, RCT

Outcomes

Primary: ISTH major or CRNM bleeding **Secondary:** stroke, MI, stent thrombosis, urgent revascularization


AUGUSTUS TRIAL

AUGUSTUS TRIAL: Baseline Characteristics

				Total (N=4614)
		Age, median (25 th , 75 th)), years	70.7 (64.2, 77.2)
		Female, %		29.0
		CHA ₂ DS ₂ -VASc score, m	ean (SD)	3.9 (1.6)
CHA ₂ DS ₂ -	VASc score, r	nean (SD)	3	.9 (1.6)
HAS-BLED score, mean (SD)		2	.9 (0.9)	
Prior OAC	, %			49.0
P2Y ₁₂ inhi	bitor, %			
Clopidog	grel			92.6
		Qualifying index event,	%	
		ACS and PCI		37.3
Lones RD.	et al. N Engl J Med.	ACS and no PCI		23.9
	(16):1509-24.	Elective PCI		38.8

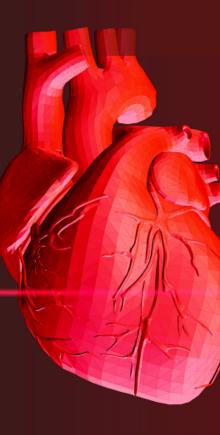
AUGUSTUS TRIAL: Major/CRNM Bleeding

Lopes RD, et al. N Engl J Med. 2019;380(16):1509-24.

AUGUSTUS TRIAL: Ischemic Outcomes – Apixaban vs. VKA

Endpoint	Apixaban (N=2306)	VKA (N=2308)	HR (95% CI)
Death/ischemic events (%)	6.7	7.1	0.93 (0.75–1.16)
Death (%)	3.3	3.2	1.03 (0.75–1.42)
Cardiovascular death (%)	2.5	2.3	1.05 (0.72–1.52)
Stroke (%)	0.6	1.1	0.50 (0.26–0.97)
Myocardial infarction (%)	3.1	3.5	0.89 (0.65–1.23)
Definite or probable stent thrombosis (%)	0.6	0.8	0.77 (0.38–1.56)
Urgent revascularization (%)	1.7	1.9	0.90 (0.59–1.38)
Hospitalization (%)	22.5	26.3	0.83 (0.74–0.93)

Lopes RD, et al. N Engl J Med. 2019;380(16):1509-24.

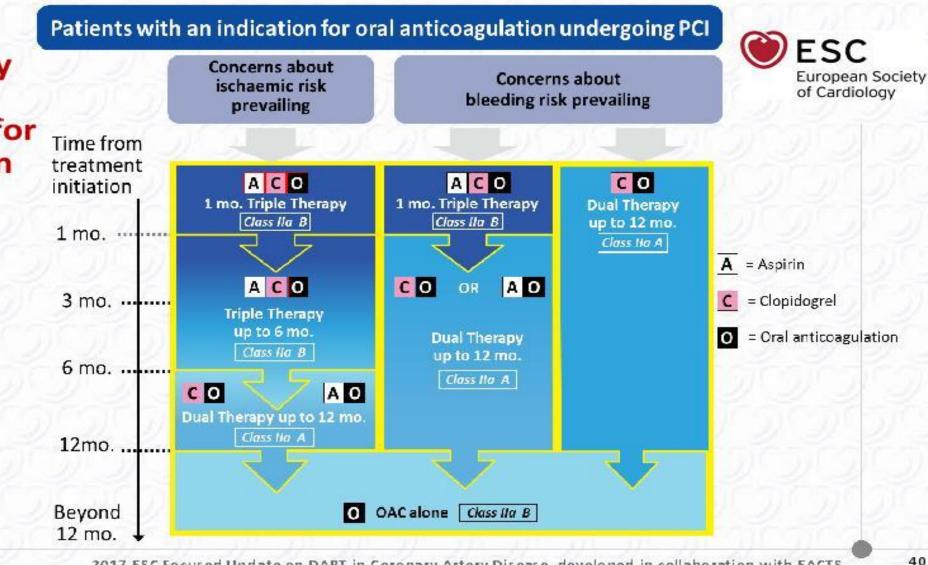


AUGUSTUS TRIAL: Endpoints

Endpoints	Apixaban	Warfarin	p-value
Major or CRNM bleeding	241/2290 (10.5%)	332/2259 (14.7%)	< 0.001
Death or hospitalization	541/2306 (23.5%)	632/2308 (27.4%)	0.002
Death or ischemic event	154/2306 (6.7%)	163/2308 (7.1%)	NS

Endpoints	Aspirin	Placebo	p-value
Major or CRNM bleeding	367/2277 (16.1%)	204/2279 (9.0%)	< 0.001
Death or hospitalization	604/2307 (26.2%)	569/2307 (24.7%)	NS
Death or ischemic event	149/2307 (6.5%)	168/2307 (7.1%)	NT

NS, not significant; NT, not tested.


AUGUSTUS TRIAL: Conclusions

- In patients with AF and recent ACS or PCI treated with a P2Y₁₂ inhibitor, OAC regimen that included apixaban, without aspirin, resulted in less bleeding and fewer hospitalizations without significant differences in ischemic events than regimens that included a VKA, aspirin, or both
- Largest trial available
- Stroke and bleeding risks were assessed
- Percentage of time in therapeutic INR was lower than other DOAC PCI trials
- Majority of patients were placed on clopidogrel

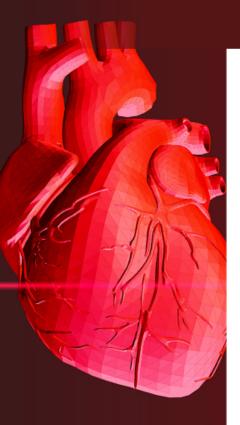
DAPT vs. TAT: Guideline Recommendation

- ACC/AHA Guidelines
 - If TAT is used, it may be reasonable to choose clopidogrel over prasugrel
 - DAPT with a P2Y₁₂ inhibitor (clopidogrel or ticagrelor) and doseadjusted VKA, rivaroxaban 15 mg daily, or dabigatran 150 mg twice daily is reasonable
 - If TAT is used, then transition to DAPT may be considered at 4 to 6 weeks of TAT

Algorithm for dual antiplatelet therapy (DAPT) in patients with an indication for oral anticoagulation undergoing percutaneous coronary intervention (PCI)

www.escardio.org/guidelines

2017 ESC Focused Update on DAPT in Coronary Artery Disease, developed in collaboration with EACTS (European Heart Journal 2017 - doi:10.1093/eurheartj/ehx419)



Patients with Renal Insufficiency

Renal Insufficiency

- AF is more common in patients with ESRD on hemodialysis than in the general population
 - Prevalence of 11%-13%
 - Increased risk of stroke and bleeding among patients with AF and ESRD
 - 1.5-fold increase in stroke
 - 2-fold increase in bleeding

Pharmacokinetic Properties of DOACs

	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Anticoagulation target	Factor II	Factor Xa	Factor Xa	Factor Xa
Impact on coagulation assay	aPTT (2-3 x) INR 40%个	aPTT 40% INR 40%个	个aPTT & INR	个aPTT
Time to peak (hours)	1-3	2-4	1-3	1-2
Half-life (hours)	14-17	9-13	8-15	~ 10
% renal elimination	80%	66%	25%	50%
Dialyzable	Yes	No	No	
CYP metabolism	No	30% CYP3A4	15% CYP3A4	< 4%
P-glycoprotein substrate?	Yes	Yes	Yes	Yes

Garcia D, et al. *Blood*. 2010;115(1):15-20.; Wittkowsky A. *Pharmacotherapy*. 2011;31(12):1175-91.

Renal Dosing of DOACs

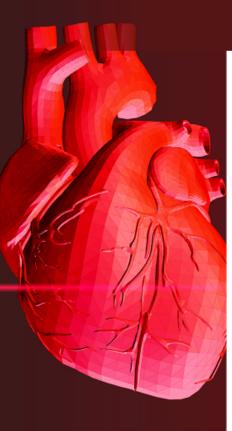
Indication	Apixaban	Dabigatran	Edoxaban	Rivaroxaban
Non-valvular AF	Reduce dose to 2.5 mg BID (2 of 3 criteria: SCr ≥ 1.5 mg/dL, age ≥ 80 years, weight ≤ 60 kg)	Reduce dose to 75 mg BID if CrCl 15- 30 mL/min; avoid use if CrCl < 15 mL/min	Avoid use if CrCl > 95 mL/min; reduce dose to 30 mg daily if CrCl 15- 50 mL/min	Reduce dose to 15 mg daily if CrCL < 30-50 mL/min
VTE treatment	No dose reduction	Avoid if CrCl < 30 mL/min	Reduce dose to 30 mg daily if CrCl < 15-50 mL/min or weight ≤ 60 kg; avoid use if CrCl < 15 mL/min	Avoid use if CrCl < 30 mL/min

RENAL AF: Renal Hemodialysis Patients Allocated Apixaban versus Warfarin in Atrial Fibrillation

Objective

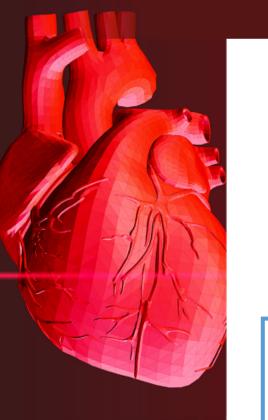
Assess the safety of apixaban versus warfarin with respect to major bleeding or CRNM bleeding in patients with AF and with ESRD on hemodialysis

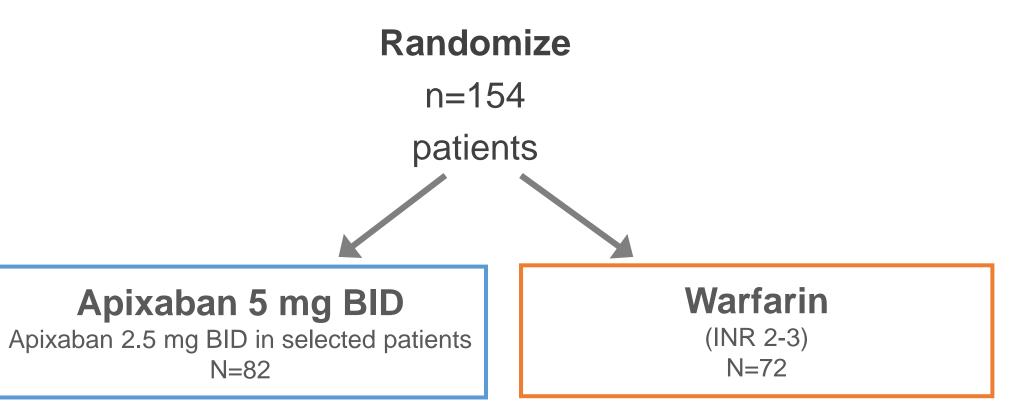
Trial design


Open-label, randomized trial

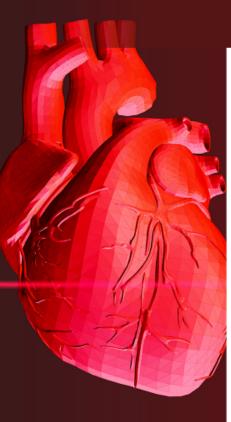
Endpoints

Primary: ISTH major or CRNM bleeding **Secondary:** PK in patients randomized to apixaban: death, stroke, or systemic embolism


Pokorney SD. AHA 2019 Scientific Sessions, Philadelphia, PA. November 16, 2019.


RENAL AF

- Inclusion criteria:
 - Atrial fibrillation
 - CHA_2DS_2 -VASC ≥ 2
 - Hemodialysis
 - Candidate for OAC
- Exclusion criteria:
 - Moderate to severe mitral stenosis
 - Anticoagulation for other reasons than AF
 - Need for aspirin dose > 81 mg
 - DAPT

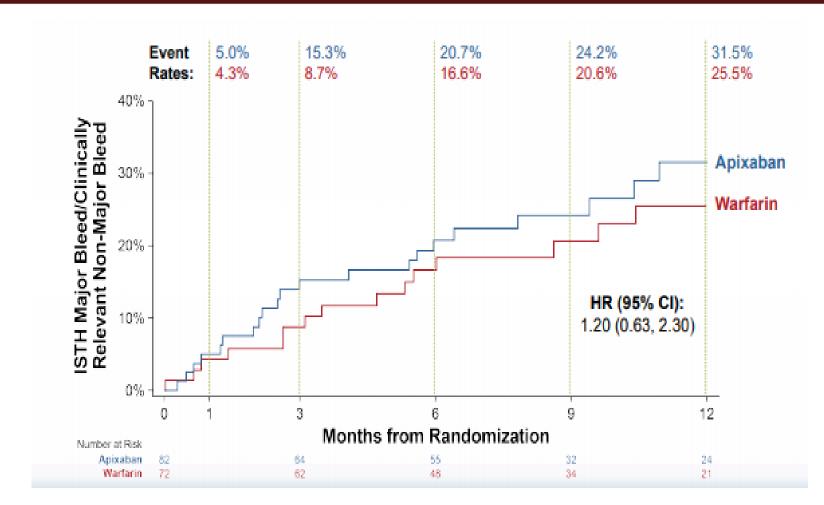


Pokorney SD. AHA 2019 Scientific Sessions, Philadelphia, PA. November 16, 2019.

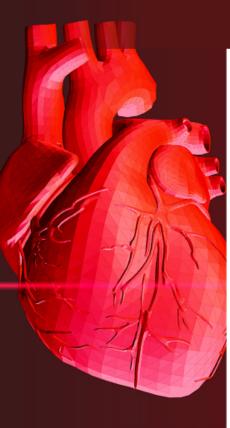
RENAL AF: Baseline Characteristics

	Apixaban (N=82)	Warfarin (N=72)
Age (median), years	69	68
• ≥ 75 years, n (%)	24 (29.3%)	15 (20.8%)
Female, n (%)	34 (41.5%)	22 (30.6%)
Black, n (%)	35 (42.7%)	34 (47.2%)
CHA ₂ DS ₂ -VASc, mean	4	4
Stroke, n (%)	17 (20.7%)	12 (16.7%)
Warfarin or DOAC naive, n (%)	10 (12.2%)	5 (5.6%)
Type of AF, n (%) Paroxysmal Persistent/permanent 	45 (54.9%) 37 (45.1%)	40 (55.6%) 32 (44.4%)
Aspirin, n (%)	29 (36.7%)	32 (45.7%)
Prior clinically relevant bleeding, n (%)	18 (22.0%)	14 (19.4%)

RENAL AF: Characteristics

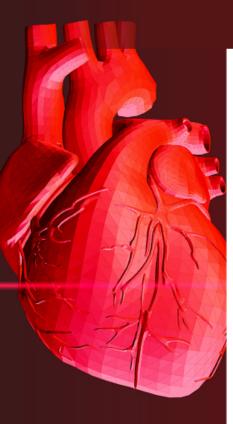


Randomized to apixaban	Apixaban (n=77)
First apixaban dose	
2.5 mg twice daily	22 (28.6%)
5 mg twice daily	55 (71.4%)
Apixaban dose reduced from 5 mg to 2.5 mg twice daily	15 (27.3%)


Patients randomized to warfarin	Warfarin (n=68)
Time in therapeutic range (INR 2-3)	44.3%

Pokorney SD. AHA 2019 Scientific Sessions, Philadelphia, PA. November 16, 2019.

Time to Major or CRNM Bleeding

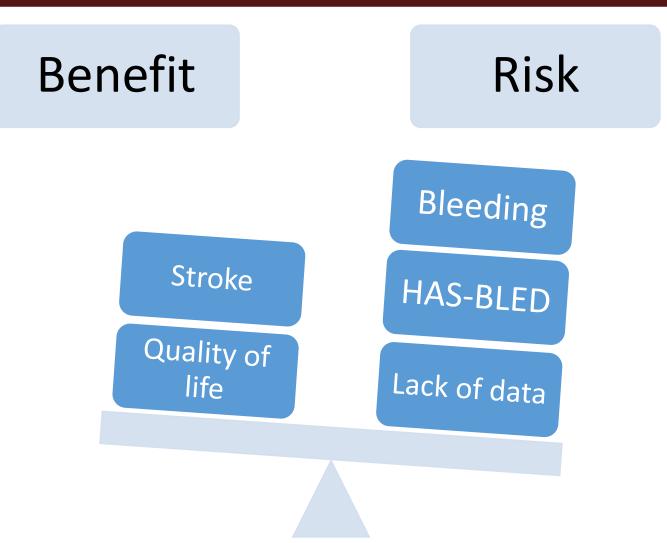

RENAL AF: Primary Safety Endpoint

	Apixaban (N=82)	Warfarin (N=72)
ISTH major bleed/CRNM bleed	21 (25.6%)	16 (22.2%)
Intracranial	1 (1.2%)	1 (1.4%)
Gastrointestinal	2 (2.4%)	6 (8.3%)
Hemodialysis access site	11 (13.4%)	6 (8.3%)
ISTH major bleed	7 (8.5%)	7 (9.7%)
Intracranial	1 (1.2%)	1(1.4%)
Gastrointestinal	2 (2.4%)	5 (6.9%)
Hemodialysis access site	1 (1.2%)	0 (0%)
ISTH CRNM bleed	14 (17.1%)	9 (12.5%)
Gastrointestinal	0 (0%)	1 (2.8%)
Hemodialysis access site	10 (12.2%)	6 (8.3%)

Pokorney SD. AHA 2019 Scientific Sessions, Philadelphia, PA. November 16, 2019.

RENAL AF: Secondary Endpoint

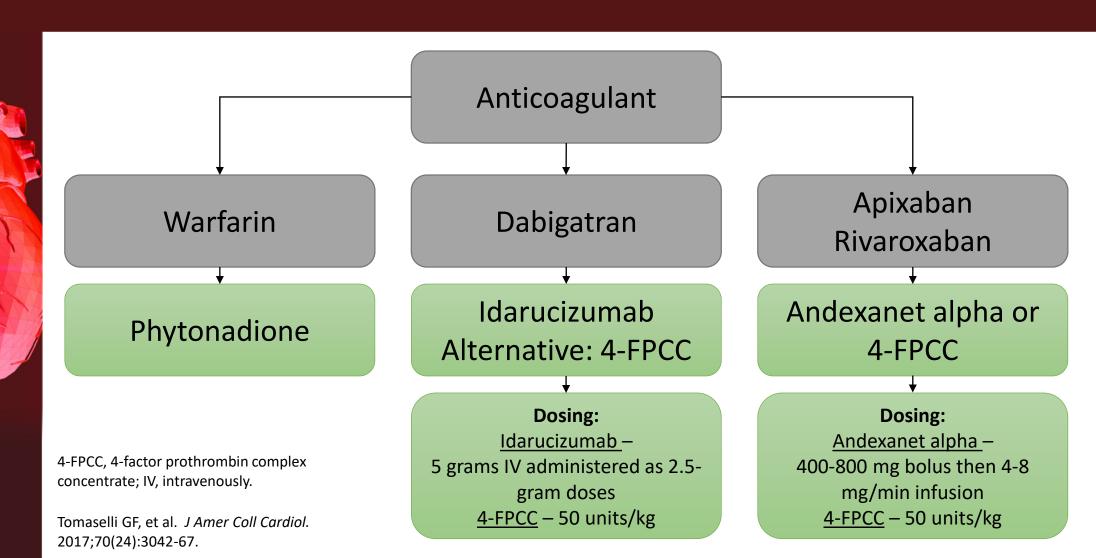

	Apixaban (N=82)	Warfarin (N=72)
Stroke	2 (2.4%)	2 (2.8%)
• Ischemic	1 (1.2%)	2 (2.8%)
Hemorrhagic	1 (1.2%)	6 (8.3%)
Systemic embolism	0 (0%)	0 (0%)
Death	21 (26.5%)	13 (18.1%)
Cardiovascular	9 (11%)	4 (5.6%)
Non-cardiovascular	5 (6.1%)	8 (11.1%)
Undetermined	7 (8.5%)	1 (1.4%)
Bleeding-related death	1 (1.2%)	0 (0%)


Pokorney SD. AHA 2019 Scientific Sessions, Philadelphia, PA. November 16, 2019.

RENAL AF: Conclusions

- First randomized trial to assess the safety of a DOAC (apixaban) vs. warfarin for patients with AF and ESRD on hemodialysis
- Terminated prematurely and the power was limited by small sample size
- In this exploratory study, there were similar rates of major and CRNM bleeding with apixaban and warfarin
- Large proportion of warfarin patients in subtherapeutic range
- Results: apixaban may be a reasonable anticoagulant choice in patients on hemodialysis

Anticoagulation: Striking a Balance



Anticoagulants: Select Drug Interactions

Rivaroxaban	Dabigatran	Apixaban	Edoxaban
Itraconazole, ketoconazole, nelfinavir, lopinavir/ritonavir, ritonavir, conivaptan *Avoid use	Dronederone, ketoconazole *Consider reducing the dabigatran dose to 75 mg BID in the setting of mild renal impairment (CrCl 30-50 mL/min) *Avoid use if CrCl < 30 mL/min	Ketoconazole, itraconazole, voriconazole, ritonavir, clarithromycin *Decrease dose to 2.5 mg BID or avoid concomitant use *If already on 2.5 mg dose and one of these agents is initiated, discontinue apixaban	
Amiodarone, diltiazem, verapamil, quinidine, ranolazine, dronedarone, erythromycin, azithromycin *If CrCl 15-80 mL/min, avoid use			
CYP3A4 or P-gP inducers *Avoid use	CYP3A4 or P-gP inducers * <i>Avoid use</i>	CYP3A4 or P-gP inducers *Avoid use	CYP3A4 or P-gP inducers *Avoid use
P-gP, P-glycoprotein.			019.; Pradaxa (dabigatran) [prescribing information]. 2 2019.; Xarelto (rivaroxaban) [prescribing information].

Bleeding Reversal

Team-Based Clinician-Patient Discussion

- Discuss stroke risk
- Assess presence of risk factors
- Discuss the importance of adherence and modifiable risk factors
- What is the patient's perceived risk, as well as reduction in risk with therapy?
- Establish patient's and family's goals and preferences
- *Is the patient willing to adhere to therapy?*

Patient education should be provided by all healthcare team members

Question & Answer

Thank You!